¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-CONF-413969

Frontiers of Performance
Analysis on Leadership-Class
Systems

R. J. Fowler, L. Adhianto, B. R. de Supinski, M. Fagan,
T. Gamblin, M. Krentel, J. Mellor-Crummey, M. Schulz,
N. Tallent

June 16, 2009

SciDAC Conference
San Diego, CA, United States
June 16, 2009 through June 18, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Frontiers of performance analysis on leadership-class
systems

R Fowler!, L. Adhianto?, B de Supinski®, M Fagan?, T Gamblin?®,
M Krentel?, J Mellor-Crummey?, M Schulz?, and N Tallent?
! Renaissance Computing Institute, UNC, Chapel Hill, North Carolina

2 Rice University, Houston, Texas
3 Lawrence Livermore National Laboratory

E-mail: rjf@renci.org, laksono@cs.rice.edu, bronis@llnl.gov, mfagan@cs.rice.edu,
tgamblin@llnl.gov, krentel@cs.rice.edu, johnmc@cs.rice.edu, schulzm@llnl.gov,
tallent@cs.rice.edu

Abstract. The number of cores in high-end systems for scientific computing are employingis
increasing rapidly. As a result, there is an pressing need for tools that can measure, model,
and diagnose performance problems in highly-parallel runs. We describe two tools that employ
complementary approaches for analysis at scale and we illustrate their use on DOE leadership-
class systems.

1. Extreme Scaling and its Performance Challenges

In recent years, the emergence of multi-core computer chips has been a factor in the dramatic
increase in the total number of cores, or computational elements (CEs), deployed in top-end
systems. In the November, 2008 Top500 list [1], 12 systems had over 32K cores, and one had over
200K. Systems are being designed to scale to over one million. Data parallelism using an SPMD
programming style has been remarkably successful at scaling applications up to thousands of
cores, but computational science researchers who aspire to use very large systems efficiently must
face the harsh reality of Amdahl’s law: as the count of CEs goes up, every part of an application
must exhibit appropriate scaling behavior on every CE or else there will be a significant loss
in performance. Thus, it is vital to characterize the scaling properties of all phases of the
computation. The characterization must cover all of the CEs over the entire duration of a run.
Furthermore, it is necessary for tools to present specific details about performance problems
that must be addressed to achieve the required efficiency at scale.

There does not yet exist a practical approach that can simultaneously achieve both the needed
coverage and detail with a single set of measurements obtained with a single tool. To do so would
require recording, communicating, and storing a massive quantity of data that grows with the
sizes of system and application as well as with the duration of a problem run. Even if it were
possible to collect the data, analysis of the data would be daunting and expensive.

We describe practical tools that address tractable and complementary aspects of the problem,
together covering a large part of the problem space. These tools and methods were developed
with DOE SciDAC support. We illustrate the use of these tools through examples that apply
them to scientific codes that run on the DOE Office of Science leadership-class systems.

s0O0n hpcviewer: FLASH /white dwarf: IBM BG/P, weak 256->8182 -
™% Driver_evolveFlas... "S Grid_updateRefine...
R Loop through all processors
21 Do iproc = @, nprocs-1 ?
21
215 If (iproc == 8) Then 600K| — YN 400k] = v 200K
216 off_proc = .False. v % K@M
217 Else * +
218 of f_proc = .True. &
P Q
% Calling Context View| %, Callers View| fs. Flat View| (a) Differencing call-path profiles to pinpoint scalability
[216 [fo | A A bottlenecks when weak scaling from ¢ to p processors.
Scope ... | scaling loss | % scaling loss ¥
Experiment Aggregate Metrics 1.65e+08 2.44e+01 100 %
¥ flash 1.65e+08 |2.44e+01 100 %
¥ [driver_evolveflash 9.41le+07 1.39e+01 57.1%
¥ loop at Driver_evolveFlash.F90: 92 9.41e+07 |1.39e+01 57.1%
¥ B grid_updaterefinement 2.66e+07 3.93e+00 16.1%
¥ [BP gr_updaterefinement 2.57e+07 [3.81e+00 15.6%
¥ E» amr_refine_derefine 2.4%e+07 | 3.68e+00 15.1%
¥ [BP amr_morton_process 2.34e+07 |3.45e+00 14.2%
¥ B find_surrblks 2.26e+07 |3.33e+00 13.7%
¥ B local_tree_build 2.25e+07 [3.33e+00 13.7%
¥ loop at local_tree_build.F90: 211 2.25e+07 |3.33e+00 13.7%
¥ loop at local_tree_build.F90: 216 2.25e+07 3.33e+00 13.7%
P loop atlocal_tree_build.F90: 2§ 9.68e+06 1.43e+00 5.9%
» B pmpi_sendrecv_replace 3.05e+06 |4.51e-01 1.8% .

(b) Using HPCTOOLKIT to analyze scaling losses (microseconds) for
FLASH when running at 256 and 8192 cores on an IBM BG/P.

Figure 1. Pinpointing scalability bottlenecks using differential analysis of call path profiles.

2. Measuring and Characterizing Scalability.

2.1. Differential Call-Path Profiling using HP CTOOLKIT

If an execution of a data-parallel program is sufficiently balanced and symmetric, the behavior
of the program as a whole can be characterized by examining the scaling performance of any one
of the CEs. If behavior is sufficiently stable over time, then an entire run can be characterized
by analyzing profiles that are integrated over any appropriate time interval.

Differential profiling [2] is a strategy for analyzing multiple executions of a program by
combining their execution profiles mathematically. A comparison of profiles from two executions
yields information about where and how much the costs in the executions differ. While a flat
profile difference may indicate that more time is spent in some procedure X in one execution
relative to another, if X is called from multiple places, a flat profile difference lacks information
about how the extra cost in X was incurred on behalf of different calls to X.

To understand an execution’s costs in context, Rice University’s HP CTOOLKIT uses call-path
profiling [3]. HPCToOOLKIT’s call-path profiler uses call-stack unwinding in conjunction with
sampling to attribute execution costs to full calling contexts [4]. This capability is particularly
important for procedures such as MPI_Wait, whose costs are very dependent on calling context.

To pinpoint and quantify scalability bottlenecks for parallel programs and to attribute them
to calling contexts, we compare call path profiles from a pair of executions using different levels of
parallelism [5]. Consider two parallel executions of an application, one executed on ¢ processors
and the second executed on p processors, where p > ¢. In a weak scaling scenario, each processor
in both executions computes on an identical amount of local data. If the application exhibits
perfect weak scaling, then the total cost (e.g., execution time) should be the same in both
executions. If every part of the application scales uniformly, then this equality should hold in

each scope of the application. Figure 1(a) pictorially shows the analysis of weak scaling by
comparing two representative calling context trees (CCTs)!—one tree from a process in each
execution. For instance, the difference in cost incurred in the subtree highlighted in magenta in
the CCTs represents parallel overhead when scaling from ¢ to p processors. This difference in
cost for the subtree can be converted into percent scalability loss by dividing by the inclusive
cost of the root node in the CCT for p processors and multiplying by 100. Computing inclusive
scalability losses for each node in a CCT enables one to locate scalability bottlenecks easily in
a top-down fashion by tracing patterns of losses down paths from the root.

2.2. Scalable Analysis of Dynamic Load-Balance using Libra

Characterizing and tuning perfectly balanced SPMD codes, however, is only part of the problem.
Many large-scale codes use irregular meshes, so partitioning of problems is not perfect. Methods
such as adaptive mesh refinement (AMR) have behavior that evolves over time and the evolution
induces load imbalances over time. Such behavior can be highly dependent on input data
and the form of imbalances may change from problem to problem. The run-time layout of
the application on the hardware can also introduce imbalances due to imperfect mappings
of application topology to the system, causing differences in communication and I/O costs
among the population of CEs. Finally, balance and efficiency can be impacted by run-time
conditions such as contention for communication and I/O between jobs that happened to be
scheduled together, or by the overhead of using error-correcting mechanisms to tolerate memory
or interconnect (e.g., Infiniband) problems. The challenge of dealing with these problems
requires methods that can track economically the time evolution of scalable computations while
still retaining enough detail to identify and diagnose anomalous behavior.

In prior work, we developed the Libra [6, 7] load-balance measurement tool. In the presence
of adaptive and dynamic behavior, tools must be capable of characterizing the evolution of
imbalances and of localizing the sources of imbalance to semantically meaningful parts of
the application. We therefore use a model in which performance metrics are presented as
rates normalized to a hierarchical decomposition of the application’s behavior. Progress steps
correspond to program phases that represent application-defined progress towards completing
the computation. A time step in a simulation is a typical progress step. A hierarchy of effort
steps can be nested within each of the progress steps. Effort steps represent the phases of
work done to make a unit of progress. Effort steps in large parallel programs correspond to
communication actions (especially collective operations), each iteration of an implicit solver,
local physics computations, I/O operations, etc.

Libra uses the PMPI interface to attach measurement operations to synchronous MPI calls.
These are used to denote the end points of effort regions automatically. Currently, the user
must mark each progress region by manualling adding a call to a Libra library routine. We are
investigating techniques to automate this process.

For each effort region, Libra generates a two-dimensional profile representing effort in that
region across processes and over time. The data from these regions can be copious, so we use
aggressive, parallel wavelet compression to aggregate and communicate these data to a central
location. Our compression algorithm is lossy, but it preserved significant features even at very
low bit rates. Figure 2 shows Libra’s compression pipeline in detail.

This strategy allows us to achieve between two and three orders of magnitude of compression,
typically, while still preserving outliers, load distribution, and evolutionary behavior. Our
compression algorithm also exhibits good scaling behavior. Each region is compressed
independently, thus permitting the work of compression to be balanced evenly across all processes

1 A CCT is a weighted tree in which each calling context is represented by a path from the root to a node and a
node’s weight represents the cost attributed to its associated context.

MPI Rank

« (LLLD s
ns (LTI i @ >%/v@/'
\ "'1m/ Parallel Huffman

Rows Initially ' Consolidate Wavelet EZW Run-length Coding
Distributed Rows Transform Encoding Encoding Reduction (Optional)

Figure 2. Libra Compression Pipeline

in the application, The time required for compression does not increase significantly as system
size grows.

3. Case Studies
We present brief examples illustrating the application of these tools to real problems.

3.1. Pinpointing Scalability Bottlenecks using HPCTOOLKIT

To show the power of HPCTooLKIT’s differential call-path profiling analysis, we used it to
pinpoint scaling bottlenecks in FLASH [8], a code that uses adaptive mesh refinement to model
astrophysical thermonuclear flashes. We performed a weak scaling study of a white dwarf
explosion by executing 256-core and 8192-core simulations on an IBM BlueGene/P located at
the Argonne Leadership Computing Facility. For the 8192-core execution, both the input and
the number of cores are 32x larger than the 256-core execution. With perfect scaling, we would
expect identical run times and call-path profiles for both configurations.

Figure 1(b) shows a portion of the residual calling-context tree, annotated with two metrics:
“scaling loss” and “% scaling loss”. The former quantifies the scaling loss (in microseconds)
while the latter expresses that loss as a percent of total execution time (shown in scientific
notation). The top-most entry in each metric column gives the aggregate metric value for the
whole execution. A percentage to the right of a metric value indicates the magnitude of that
particular value relative to the aggregate. Thus, for this execution, there was a scaling loss of
1.65 x 10® us, accounting for 24.4% of the execution.? By sorting calling contexts according
to metric values, we immediately see that the evolution phase (Driver_evolveFlash) of the
execution (highlighted with a square) has a scaling loss that accounts for 13.9% of the total
execution time on 8192 cores, which represents 57.1% of the scaling losses in the execution.

To pinpoint the scalability bottleneck in FLASH’s simulation, we use the “hot path” button
to expand automatically the unambiguous portion of the hot call path according to this metric.
Figure 1(b) shows this result. HPCToolkit identifies a loop (beginning at line 213), within its full
dynamic calling context — a unique capability — that is responsible for 13.7% of the scaling losses.
This loop uses a ring-based all-to-all communication pattern known as a digital orrery to update
a processor’s knowledge about neighboring blocks of the adaptive mesh. Although FLASH only

2 A scaling loss of 24.4% means that FLASH is executing at 75.6% parallel efficiency on 8192 cores relative to its
performance on 256 cores.

Start TotalTime Deviation MeanSkew MeanKurtosis

» |7 write_savefile(io.f90:312) 8.57622e+14 (6.04%) 2.05189%+11 3.38664 14.1556
» [write_savefile(io.f90:312) 5.03635e+14 (3.55%) 1.99005e+11 5.01366 27.333

» [write_savefile(io.f90:322) 3.38871e+14 (2.39%) 8.5322%+10 3.36624 14.3541
» ™ write_savefile(io.f90:322) 1.78961e+14 (1.26%) 7.32416e+10 4.98725 27.1377

Start TotalTime Deviation MeanSkew MeanKurtosis
» |7 write_savefile(io.f90:312) 3.89857e+15 (11.28%) 4.65221e+11 3.36191 13.9688
» [write_savefile(io.f90:312) 2.52271e+15 (7.30%) 5.00694e+11 5.01732 27.355
» [write_savefile(io.f90:322) 2.09382e+15 (6.06%) 2.53672e+11 3.31737 13.7776
» [write_savefile(io.f90:322) 1.33583e+15 (3.87%) 2.70904e+11 5.01113 27.3174

Start TotalTime Deviation MeanSkew MeanKurtosis
» ™ write_savefile(io.f90:312) 1.28868e+16 (19.98%) 7.79937e+11 3.42771 14.5355
» [write_savefile(io.f90:322) 8.83365e+15 (13.69%) 5.33235e+11 3.30364 13.637
» [write_savefile(io.f90:312) 7.97592e+15 (12.36%) 7.96813e+11 5.00885 27.2989
» [write_savefile(io.f90:322) 5.35586e+15 (8.30%) 5.35976e+11 5.01255 27.3279

Figure 3. Load balance plots for checkpointing operations in S3D runs at 4096 (top), 8192
(middle), and 16384 (bottom) cores on an IBM BG/P.

uses the orrery pattern to set up subsequent communication to fill guard cells, looping over
all processes is inherently unscalable. Other scalability bottlenecks can be identified readily by
repeating the “hot path” analysis for other subtrees in the computation where scaling losses
are present. The power of HPCTOOLKIT’s scalability analysis is apparent from the fact that it
immediately pinpoints and quantifies the scaling loss of a key loop deep inside the application’s
layers of abstractions.

3.2. Examining Load Balance Using Libra

We used Libra to measure the load-balance behavior of S3D, a Direct Numerical Simulation
(DNS) of turbulent combustion. Fine-grain calculations to simulate micro-turbulence with S3D
can be used to generate coarser models for engineering-level simulation codes.

The computational regions of S3D exhibit almost perfect weak scaling [9]. We applied Libra to
200-time step runs of S3D on a Blue Gene/P system (Intrepid) at Argonne National Laboratory’s
Leadership Computing facility. For each time step, we examined the time spent in MPT_Wait and
MPI Barrier, uniquely identifying each call-site by its full call-path labeled with file names and
line numbers for each frame. We confirmed that that MPT Wait and MPI_Barrier communication
routines dominated the runtime of S3D at large scales, and that most of this time is attributed
to two call-sites in S3D’s write_savefile checkpoint routine. Since write_savefile is called
from two places in the code, four call-paths dominated execution time.

Figure 3 shows load balance profiles reported by Libra for MPI operations used in
checkpointing for 4096, 8192, and 16384-process runs (top to bottom) of S3D on Intrepid. The
tables below the profiles present summary statistics for each call-site. In the plots the vertical

axis represents time, the depth axis represents time steps (progress), and the horizontal axis
represents processes by MPI rank. In each image there are two “ridgelines” parallel to the
page corresponding to two of the periodic checkpoint operations. As we increased the size of
the runs, the plots and summaries reveal a large increase in total time spent in checkpointing.
I/O imbalance (inter-process variation) also increases with the number of nodes. This version
of S3D writes a separate checkpoint file per process. Some processes quickly write their data
to disk, while others encounter contention delays in writing theirs, resulting in the sawtooth
load patterns seen in the figures. We are currently investigating and measuring runs of S3D
with alternative I/O strategies designed to reduce and balance contention during the checkpoint
phase.

4. Conclusions and Future Directions
The two approaches that we describe are complementary. We are currently investigating
the question of coordinating their usage. For example, a unified approach would have Libra
dynamically enable HPCToolkit profiling to track problems in detail.

An emerging challenge is that explicit shared-memory parallelism on multi-core chips is
contributing a substantial multiplicative factor to the overall performance of large systems.
This adds a new dimension to the complexity of performance analysis.

Acknowledgments
This work was supported by the DOE SciDAC program under cooperative agreement numbers
DE-FC02-06ER25764, DE-FC02-06ER41445, DE-FC02-07ER25800, and DE-FC02-06ER25762.
LLNL release number LLNL-CONF-413969.

This research used resources of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the DOE Office of Science under contract DE-
AC02-06CH11357. Prepared by LLNL under Contract DE-AC52-07NA27344.

References

[1] Meuer H, Strohmaier E, Dongarra J and Horst S Top500 supercomputer sites (http://www.top500.org)

[2] McKenney P E 1998 Software: Practice and Experience 29 219-234

[3] Hall R J 1992 Call path profiling Proc. of the 14" Intl. Conf. on Software Engineering (NY, NY, USA: ACM)
pp 296-306

[4] Tallent N, Mellor-Crummey J and Fagan M 2009 Binary analysis for measurement and attribution of program
performance Proc. of the ACM SIGPLAN Symp. on Program Language Design and Implementation (NY,
NY, USA: ACM)

[5] Coarfa C, Mellor-Crummey J, Froyd N and Dotsenko Y 2007 Scalability analysis of SPMD codes using
expectations Proc. of the 21st Annual Intl. Conf. on Supercomputing (NY, NY, USA: ACM) pp 13-22

[6] Gamblin T, de Supinski B R, Schulz M, Fowler R J and Reed D A 2007 Scalable load-balance measurement
for SPMD codes In Submission

[7] Gamblin T 2009 Scalable Performance Measurement and Analysis Ph.D. thesis University of North Carolina
at Chapel Hill

[8] Dubey A, Reid L B and Fisher R 2008 Physica Scripta 132 014046

[9] de Supinski B R, Alam S, Bailey D H, Carrington L, Daley C, Dubey A, Gamblin T, Gunter D, Hovland P,
Jagode H, Karavanic K, Marin G, Mellor-Crummey J, Moore S, Norris B, Oliker L, Olschanowsky C, Roth
P C, Schulz M, Shende S, Snavely A, Spear W, Tikir M, Vetter J, Worley P and Wright N 2009 Modeling
the Office of Science ten year facilities plan: The PERI Architecture Tiger Team These proceedings

nijhuis2
Text Box
Prepared by LLNL under Contract DE-AC52-07NA27344.

